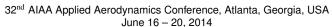
High lift flow computations using the code HiFUN


Gopalakrishna N., Balakrishnan N.

Computational Aerodynamics Laboratory, Department of Aerospace Engineering Indian Institute of Science Bangalore 560 012, Karnataka, India

Yuvraj Patil, Ravindra K., Nikhil V. Shende

S & I Engineering Solutions Pvt. Ltd., Bangalore 560 054, Karnataka, India

Outline

- Introduction
- Grids used
- Iterative convergence
- Grid convergence
- Effect of additional components
- Reynolds number effect
- Turbulence model effect
- Unsteady hysteresis study for NASA Trap Wing
- Conclusions

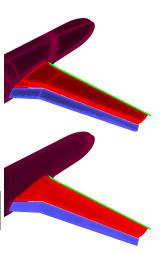
CFD Process

- Flow computations using HiFUN, a commercial flow solver by S & I Engineering Solutions (Sandl) available at CAd Lab.
- ► A_uns_hex grid (from Boeing) and B_uns_mix grid (from DLR) family provided by the HiLiftPW-2 committee is used.
- Free stream initialization (except hysterisis study)
- Postprocessing is carried out using TECPLOT available at SERC, IISc.

Features of code HIFUN

HIFUN: HIgh Resolution Flow Solver on UNstructured Meshes

- Unstructured cell centre finite volume methodology.
- Higher order accuracy: linear reconstruction procedure.
- Flux limiting: Venkatakrishnan Limiter.
- Inviscid flux computation: Roe scheme.
- Convergence acceleration: matrix free symmetric Gauss Seidel relaxation procedure.
- Viscous flux discretization: Green—Gauss theorem based diamond path reconstruction.
- Eddy viscosity computation: Spalart Allmaras (Standard), K-Omega SST & K-Omega TNT Turbulence Models.
- Parallelization: MPI.
- Dual Time Stepping.

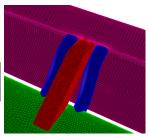

Grid details

Grid Convergence Study (Case1) $M_{\infty} = 0.175$, $Re_{\infty} = 15.1$ million

Grid Family	Туре	Size			
A_Uns_Hex	Coarse	9,556,725			
	Medium	31,998,440			
	Fine	100,561,536			
B_Uns_mix	Coarse	21,356,048			
	Medium	59,066,549			
	Fine	165,246,813			

Reynolds Number Study (Case2)

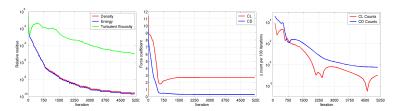
riojniciao riambor otaaj (babbe)					
Grid Family	Re_∞	Type	Size		
B_Uns_mix	1.35 million	Medium	76,972,998		
	15.1 million	Medium	73,740,331		

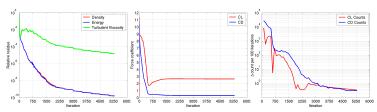


Grid details

Reynolds Number Study (Case3)

Grid Family	Re_∞	Type	Size
B_Uns_mix	1.35 million	Medium	75,547,314
	15.1 million	Medium	81,603,665

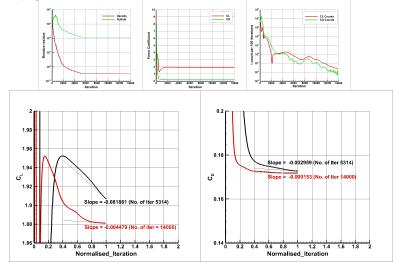


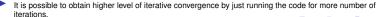

Residue & Force Coefficient Convergence, Case1 Config2

 $M_{\infty} = 0.175, Re_{\infty} = 15.1 \text{ million}, \alpha = 16 \text{ degree}$

A_uns_hex Fine Grid

B_uns_mix Medium Grid

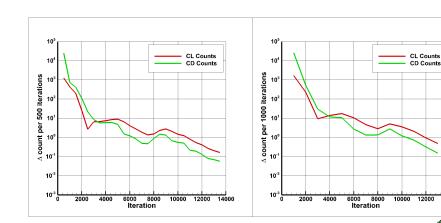




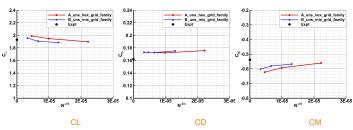
Residue & Force Coefficient Convergence, Case1 Config2, B_uns_mix

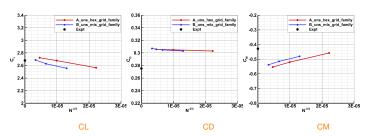
Medium Grid

 $M_{\infty} = 0.175, Re_{\infty} = 15.1$ million. $\alpha = 7$ degree



Residue & Force Coefficient Convergence, Case1 Config2, B uns mix Medium Grid


 $M_{\infty} = 0.175, Re_{\infty} = 15.1 \text{ million}, \alpha = 7 \text{ degree}$


12000 14000

Grid Convergence Study, Case1 Config2

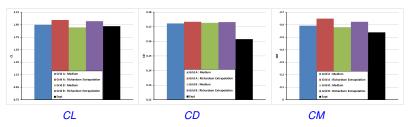
High Re case: $M_{\infty}=$ 0.175, $Re_{\infty}=$ 15.10 million, $\alpha=$ 7&16 degrees $\alpha=$ 7.0 deg

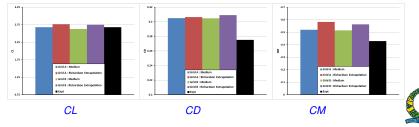
 α = 16.0 deg

► 1 CL count = 10^{-3}

1 CD count = 10^{-4}

1 CM count = 10^{-3}

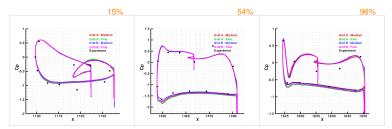



Force & Moment (Case1 Config2, A_uns_hex & B_uns_mix grid)

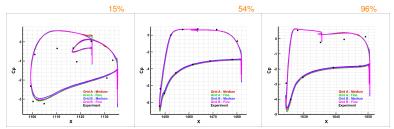
High Re case: $M_{\infty} = 0.175$, $Re_{\infty} = 15.10$ million

 α = 7.0 deg

 α = 16.0 deg


Sectional Cp: Sectional view of Slat (Case1 Config2)

Slat

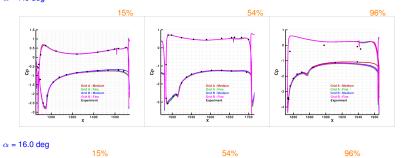


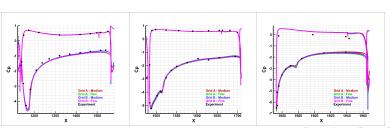
Cp distribution on the Stat (A_uns_hex & B_uns_mix grid family)

 $\textit{M}_{\infty} =$ 0.175, $\textit{Re}_{\infty} =$ 15.10 million, $\alpha =$ 7 & 16 degrees α = 7.0 deg

 α = 16.0 deg

Sectional Cp: Sectional view of Main (Case1 Config2)

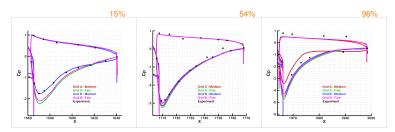

Main

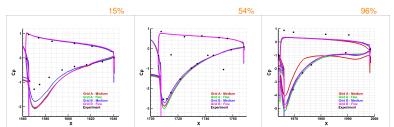


Cp distribution on the Main (A_uns_hex & B_uns_mix grid family)

 $\textit{M}_{\infty} =$ 0.175, $\textit{Re}_{\infty} =$ 15.10 million, $\alpha =$ 7 & 16 degrees α = 7.0 deg

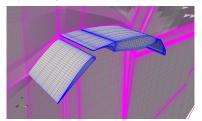
Sectional Cp: Sectional view of Flap (Case1 Config2)

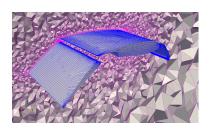

Flap



Cp distribution on the Flap (A_uns_hex & B_uns_mix grid family)

 $\textit{M}_{\infty} =$ 0.175, $\textit{Re}_{\infty} =$ 15.10 million, $\alpha =$ 7 & 16 degrees α = 7.0 deg


 α = 16.0 deg



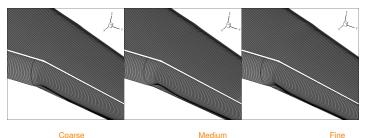
Grid View (A_uns_hex & B_uns_mix grid: Coarse)

Comparison of grids at 96 % of span

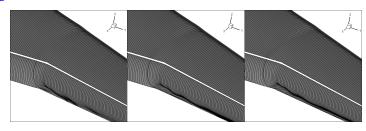
Grid A Grid B

Grid View (A_uns_hex & B_uns_mix grid family)

Coarse


Grid A Grid B

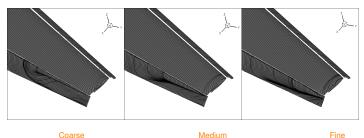
Medium

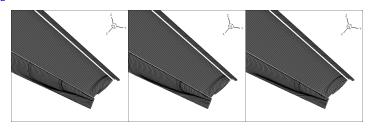


Surface Streamlines (A_uns_hex & B_uns_mix grid family)


 $\textit{M}_{\infty} = \text{0.175}, \textit{Re}_{\infty} = \text{15.10}$ million, $\alpha = \text{16}$ degrees Grid A

Grid B

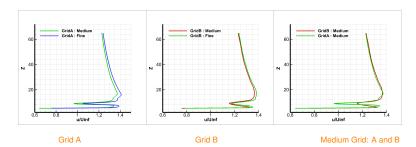


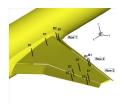


Surface Streamlines (A_uns_hex & B_uns_mix grid family)

 $\textit{M}_{\infty} = \text{0.175}, \textit{Re}_{\infty} = \text{15.10}$ million, $\alpha = \text{16}$ degrees Grid A

Grid B

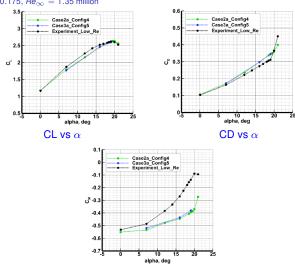




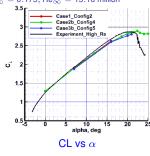
Velocity Profiles (A_uns_hex & B_uns_mix grid family)

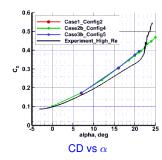
 $\textit{M}_{\infty} = 0.175, \textit{Re}_{\infty} = 15.10 \text{ million}, \, \alpha = 7 \text{ degrees}$

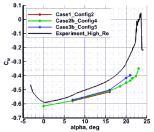
Plane 3, Location: 3E1



Additional Components: Force & Moment v.s α (Case2a Config4, Case3a Config5, B uns mix medium grid)


Low Re case: $M_{\infty}=0.175,$ $Re_{\infty}=1.35$ million





Force & Moment v.s α (Case1 Config 2, Case2b Config4, Case3b Config5, B uns mix medium grid)

High Re case: $M_{\infty} = 0.175$, $Re_{\infty} = 15.10$ million

Force & Moment v.s α (Case2 Config4, B_uns_mix medium grid)

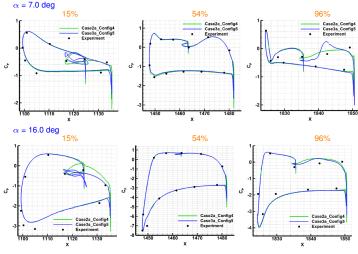
 $\textit{M}_{\infty} = 0.175, \textit{Re}_{\infty} = 1.35$ million and 15.10 million

Flow condition	Low Reynolds number		High Reynolds number	
Parameter	CL _{max}	$lpha_{ extit{max}}$	CL _{max}	$lpha_{ extit{max}}$
HiFUN	2.6361	20°	2.8954	22.40°
Experiments	2.6228	\sim 19 o	2.8730	$\sim 20^o$

- For low Re case, the numerical predictions of CL_{max} and α_{max} are comparable to experiments
- For high Re case, the numerical predictions of CL_{max} and α_{max} are higher compared to experiments

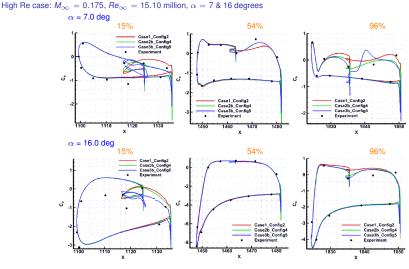
Sectional Cp: Sectional view of Slat (Case2 Config4, Case3 Config5)

Case 2 Config4: With support brackets


Case 3 Config5: With support brackets and pressure tube bundles

Cp distribution on the Slat (Case1 Config 2, Case2a Config4, Case3a Config5, B uns mix medium grid)

Low Re case: $\textit{M}_{\infty} = 0.175, \textit{Re}_{\infty} = 1.35$ million, $\alpha = 7$ & 16 degrees

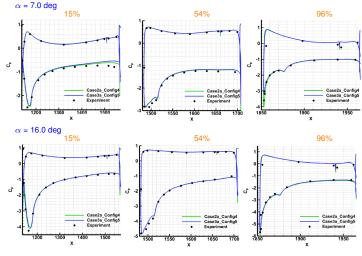


Cp distribution on the Slat (Case1 Config 2, Case2b Config4, Case3b Config5,

B_uns_mix medium grid)

Sectional Cp: Sectional view of Main (Case2 Config4, Case3 Config5)

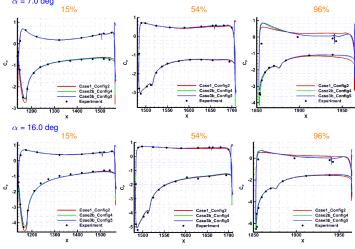
Case 2 Config4: With support brackets



Case 3 Config5: With support brackets and pressure tube bundles

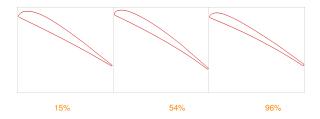
Cp distribution on the Main (Case1 Config 2, Case2a Config4, Case3a Config5, B_uns_mix medium grid)

Low Re case: $\textit{M}_{\infty} = \text{0.175}, \textit{Re}_{\infty} = \text{1.35}$ million, $\alpha = \text{7 \& 16}$ degrees



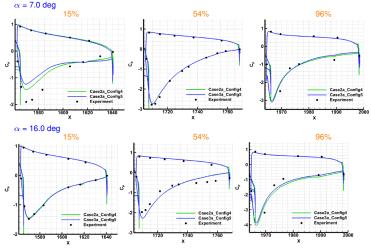
Cp distribution on the Main (Case1 Config 2, Case2b Config4, Case3b Config5, B uns mix medium grid)

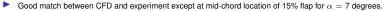
High Re case: $M_{\infty}=$ 0.175, $Re_{\infty}=$ 15.10 million, $\alpha=$ 7 & 16 degrees $\alpha=$ 7.0 deg



Sectional Cp: Sectional view of Flap (Case2 Config4, Case3 Config5)

Case 2 Config4: With support brackets

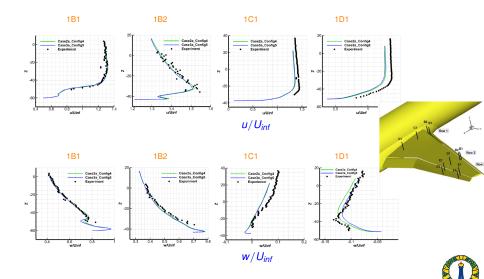

Case 3 Config5: With support brackets and pressure tube bundles



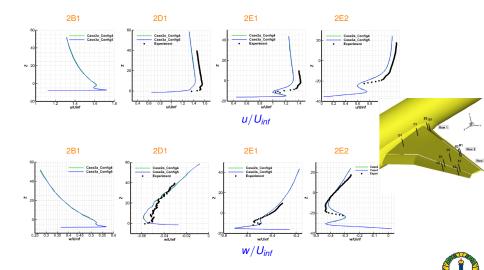
Cp distribution on the Flap (Case1 Config 2, Case2a Config4, Case3a Config5, B_uns_mix medium grid)

Low Re case: $\textit{M}_{\infty} =$ 0.175, $\textit{Re}_{\infty} =$ 1.35 million, $\alpha =$ 7 & 16 degrees

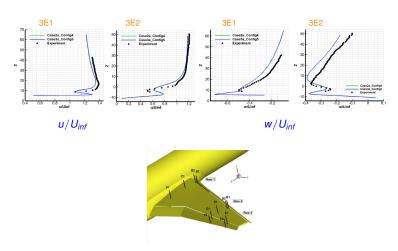
Cp distribution on the Flap (Case1 Config 2, Case2b Config4, Case3b Config5, B uns mix medium grid)


High Re case: $M_{\infty} = 0.175$, $Re_{\infty} = 15.10$ million, $\alpha = 7$ & 16 degrees 96% Case1 Config2 Case1 Config2 Case1 Config2 Case2b Config4 Case2b Config4 Case2b Config4 Case3b_Config5 Case3b Config5 Case3b_Config5 Experiment Experiment Experiment 1970 1760 α = 16.0 deg 15% 54% 96% Case1 Config2 Case1 Config2 Case2b Config4 Case2b Config4 Case2b Config4 Case3b_Config5 Case3b Config5 Case3b Config5 Experiment Experiment Experiment 1720 1600 1620 1740

- Good match between CFD and experiment except at mid-chord location of 54 % flap for lpha= 16 degrees.
- Pressure distribution near wing tip for DLR F11 match well with the experimental data in contrast to the comparison seen for low aspect ratio Trap wing


Velocity profiles **Plane 1**: Y = 246.386, (Case2a Config4 and Case3a Config5)

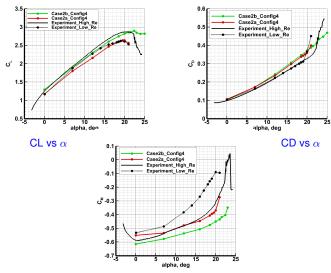
Low Re case: $M_{\infty}=0.175,$ $Re_{\infty}=1.35$ million, α = 7 deg


Velocity profiles **Plane 2**: Y = 979.596, (Case2a Config4 and Case3a Config5)

Low Re case: $M_{\infty}=0.175,$ $Re_{\infty}=1.35$ million, α = 7 deg

Velocity profiles Plane 3: Y = 1223.999, (Case2a Config4 and Case3a Config5)

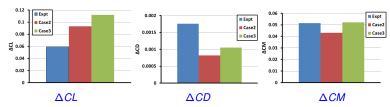
Low Re case: $M_{\infty}=0.175, Re_{\infty}=1.35$ million, $\alpha=7$ deg

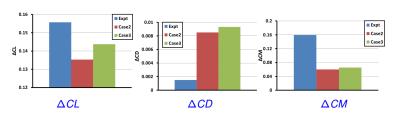


- Except at location 1D1, the presence of support brackets and pressure bundles does not lead to significant change in the velocity profile
- Velocity profiles obtained for DLR F11 match well with the experimental data in contrast to the comparison seen for Trap wing

Reynolds Number Effect: Force & Moment v.s α (Case2 Config4, B_uns_mix medium grid)

 $M_{\infty} = 0.175, Re_{\infty} = 1.35$ million &15.10 million

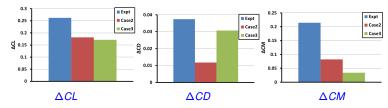

CM vs α


Force & Moment v.s α (Case2a Config4, Case3a Config5, B_uns_mix medium grid)

 $\textit{M}_{\infty} = 0.175, \textit{Re}_{\infty} = 1.35 \text{ million } \&15.10 \text{ million}$

 α = 7.0 deg

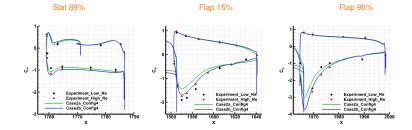
 α = 16.0 deg



Force & Moment v.s α (Case2a Config4, Case3a Config5, B_uns_mix medium grid)

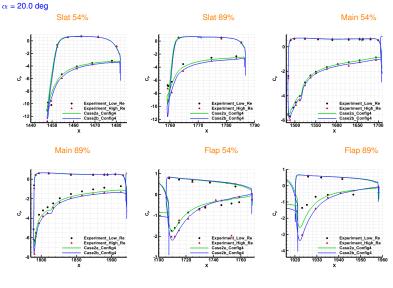
 $M_{\infty} = 0.175, Re_{\infty} = 1.35$ million &15.10 million

 α = 20.0 deg


- Qualitative trends are predicted correctly
- Predicted quantitative trends are not satisfactory

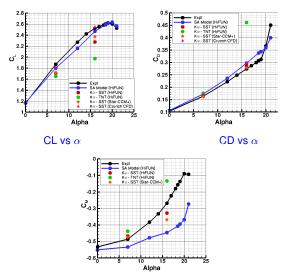
Cp distribution (Case2a Config4, Case2b Config4, B_uns_mix medium grid)

 $M_{\infty} = 0.175, Re_{\infty} = 1.35$ million &15.10 million

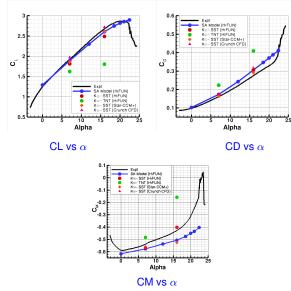

 α = 7.0 deg

Cp distribution (Case2a Config4, Case2b Config4, B_uns_mix medium grid)

 $M_{\infty}=0.175,$ $Re_{\infty}=1.35$ million &15.10 million

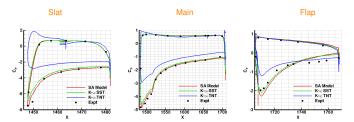


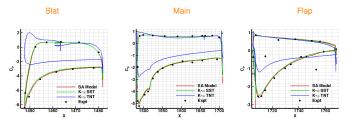
Turbulence model effect: Force & Moment v.s α (Case2a Config4, B_uns_mix medium grid)


Low Re case: $M_{\infty}=0.175,$ $Re_{\infty}=1.35$ million

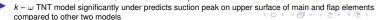
Force & Moment v.s α (Case2a Config4, B_uns_mix medium grid)

High Re case: $\textit{M}_{\infty} = 0.175, \textit{Re}_{\infty} = 15.10$ million

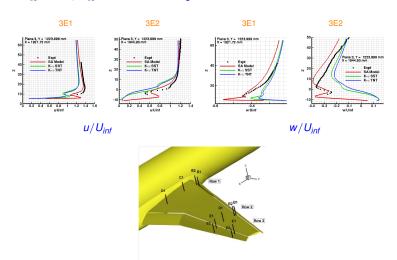



In general, $k - \omega$ TNT model is found to be less robust compared to other two models

Cp distribution at 54% section (Case2 Config4, B_uns_mix medium grid)

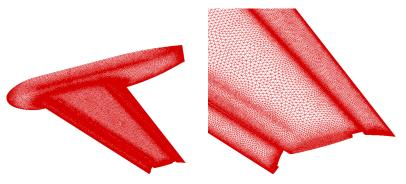

 M_{∞} = 0.175, α = 16.0 deg Low Re case: Re_{∞} = 1.35 million

High Re case: $Re_{\infty} = 15.10$ million



u/U_{inf} profiles **Plane 3**: Y = 1223.999, (Case2a Config4)

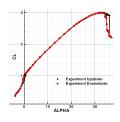
Low Re case: $M_{\infty} = 0.175$, $Re_{\infty} = 1.35$ million, $\alpha = 7$ deg

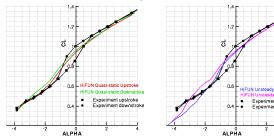


 Velocity profiles predicted by Spalart Allmaras model compare well with experimental data than other two turbulence model

Hysteresis Study (NASA Trap wing, 22 Million medium grid)

- Free stream Mach number is 0.2, Reynolds number based on MAC is 4.3 million
- Grid : Unstructured grid generated for HiLift PW1
- Experiments: Pitch and Pause Mechanism; 20 s rotation + 8 s data acquisition + 2 s data writing

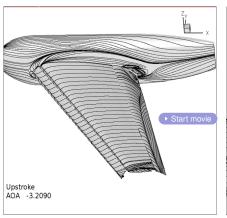

- Both quasi-steady and unsteady simulations are carried out
- For quasi-steady simulation:
 - α range: -3.834° to 3.645°
 - 20 steps in upstroke/downstroke
- For unsteady simulation:
 - α range: -3.834° to 3.645°
 - $\frac{d\alpha}{dt} = 1.25^{\circ}/s$
 - Physical time step = 0.0025 seconds (100 sub-iterations)
 - Total number of physical time steps are 2394

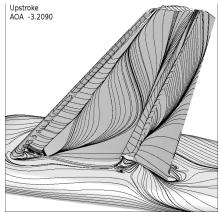


Hysteresis Study (NASA Trap wing, medium grid)

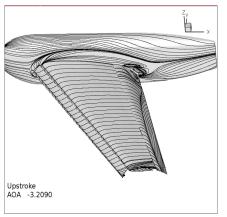
 $M_{\infty} = 0.2$, $Re_{\infty} = 4.3$ million, Lift Curve

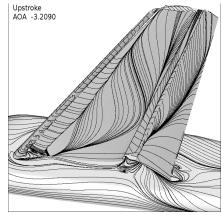
Experiment

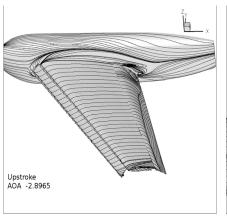

HiFUN: Quasi-static simulation

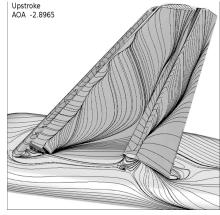

HiFUN: Unsteady simulation

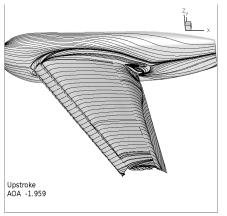
Quasi-steady simulations show only a marginal change in lift coefficient during upstroke and down-stroke Unsteady simulations show the lower leg hysteresis in the lift curve around $\alpha = -2^{\circ}$ as against

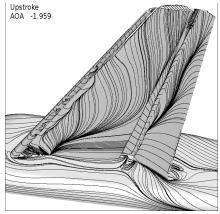

experimental curve which shows hysteresis around $\alpha = 0^{\circ}$

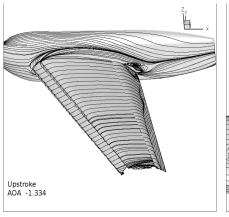


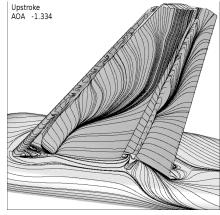


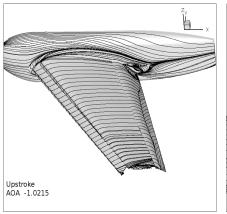


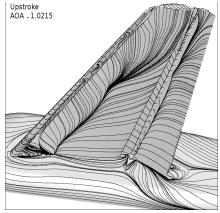


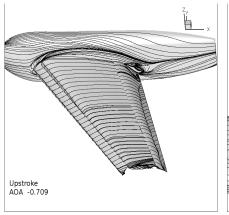


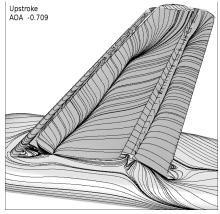


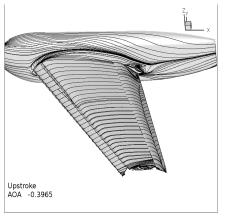


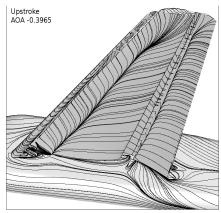


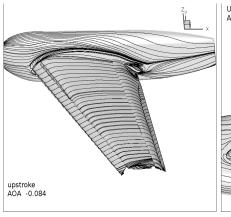


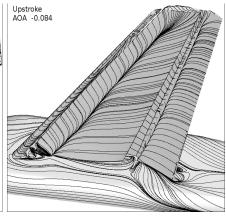


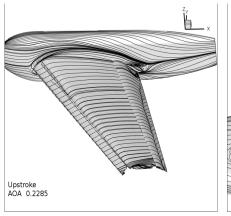


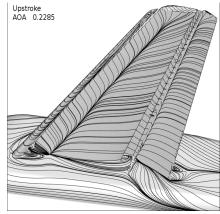


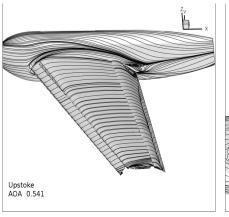


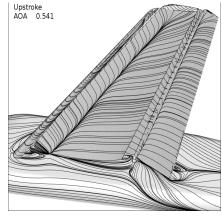


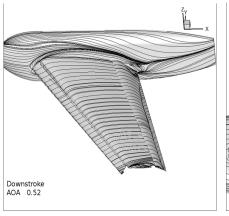


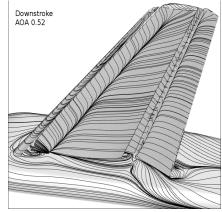


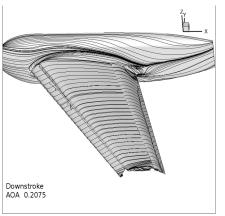


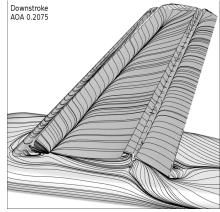


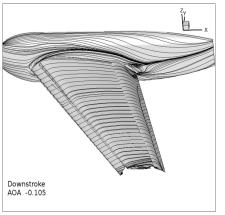


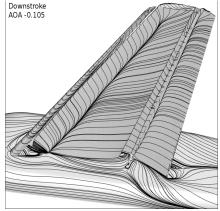


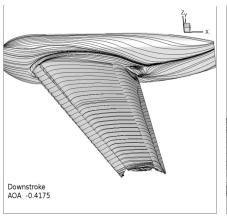


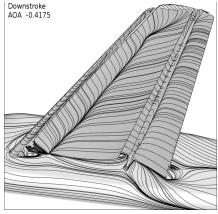


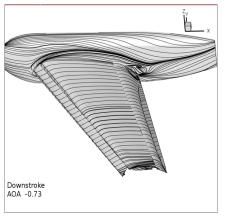


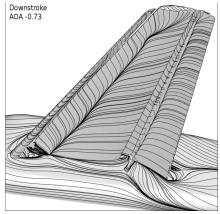


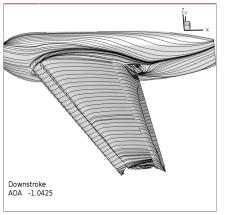


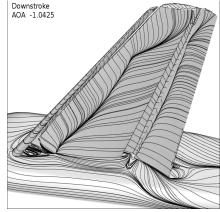


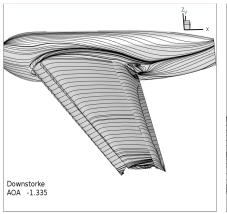


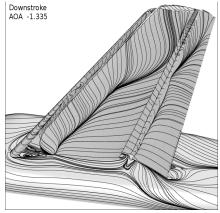


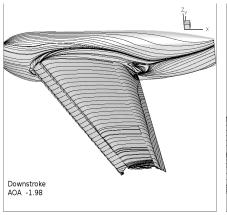


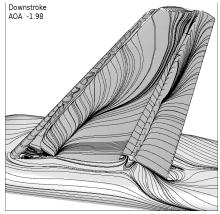


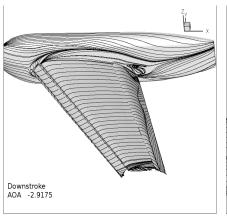


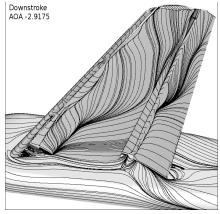


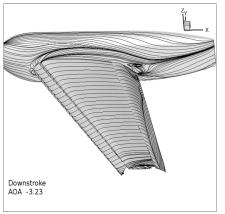


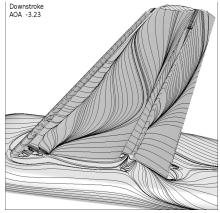


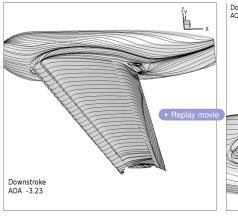


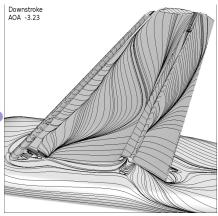












Concluding remarks

Conclusions

- ► For the incidences considered for grid convergence study, lift and drag are over-predicted and moments are more stabilizing as compared to experiments.
- In general, the pressure distribution predicted by HiFUN shows a good match with the experimental data.
- Wing tip flows are predicted more accurately for high aspect ratio DLR F11 as compared to low aspect ratio NASA trap wing.

Conclusions contd.

- No specific trends in Re study
- ► From the turbulence model study, it is found that best results can be obtained using Spalart-Allmaras Turbulence model.
- The ability of unsteady HiFUN solver to capture the lower leg hysteresis in the lift curve of NASA Trap wing is established.

Acknowledgments

- ▶ Dr. N. Munikrishna, Senior Postdoc, Dept. of Aerospace Engg., IISc., Bangalore.
- Pradeep Roy, Project Assistant, Dept. of Aerospace Engg., IISc., Bangalore.
- Vignesh, Project Assistant, Dept. of Aerospace Engg., IISc., Bangalore.
- Ramakrishnan, Project Engineer, S & I Engineering Solutions Pvt. Ltd., Bangalore.

Thank you

Thank you

- Gopalakrishna N: gopala81@gmail.com
- Yuvraj Patil: patil.yuvi@gmail.com
- Ravindra K.: deepu.ravindra@gmail.com
- Nikhil Vijay Shende: nikvijay@aero.iisc.ernet.in
- N. Balakrishnan: nbalak@aero.iis.ernet.in

